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Abstract. With the emergence of Big Data, the scarcity of data scien-
tists to analyse all the data being produced in different domains became
evident. Moreover, the processing of such amounts of data also is chal-
lenging due to current technologies in use. With this in mind, the Data-
Science4NP aims to explore the use of visual programming paradigms to
enable non-programmers to be part of the data science workforce at a
faster pace and at the same time to provide a scalable data science ser-
vice. By observing the common process employed by data scientists in the
extraction of knowledge from data, which includes data insertion, pre-
processing, transformation, data mining and interpretation/evaluation
of results, we envisioned a system to perform all these steps without
requiring users to program. Thus, our solution aims to provide an in-
tuitive user interface where users can build personalized sequential data
science workflows that are consequently processed by a back-end service.
The back-end service translates the received workflows to a lower-level
representation, enabling the execution of the translated tasks by sepa-
rate scalable and distributed data science services in parallel. The entire
system is composed of different services containerized with Docker and
orchestrated with Kubernetes, allowing it to be easily deployed in dif-
ferent clusters. To evaluate our tool, and particularly to verify if the
concept we envisioned for the creation and execution of data science
tasks was intuitive, we conducted preliminary usability tests with two
different groups of people, where we observed a high level of user satis-
faction. Concluding, from the feedback obtained, it was clear that this
concept of sequential workflows would bring added value to both novice
and advanced data scientists.

Keywords: Data Science · Distributed systems · Cloud computing.

1 Introduction

Nowadays, large amounts of data are being produced from multiple sources.
However, not all these data can be analysed and some value might be conse-
quently lost. One particular challenge to performing data analysis is the lack of
data scientists, a resource in high demand these days [1–3]. Data scientists are
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a fundamental human resource for the extraction of knowledge from data due
to their data analysis and model creation skills. To overcome this issue more
data scientists need to be trained, which will take time due to the diversity of
knowledge areas that must be taught, where computer science is included [4].
Thus, by reducing computer science topics from the data scientists curriculum,
and providing means to create models without requiring users to use program-
ming languages, we can reduce the overall time required to train the new data
scientists. As such, we envisioned a software-as-a-service (SAAS) for data scien-
tists where it is possible to perform data mining experiments without requiring
programming skills from the users.

By visualizing the knowledge discovery process reported in [5], which is used
by many data scientists, we created a system that enables the application of this
process by allowing the construction of data science workflows composed by se-
quential tasks that go from data insertion to interpretation/evaluation of results.
We enforce good practices of data mining, such as evaluation of models using
cross validation[17], nested cross validation, hold-out and train-validation-test
methods. We also enable the creation of multiple parallel models using different
parameters and features to select in the end the model that provides the best
results. All this functionalities are available from a browser, without requiring
users to install new software. The system follows a microservices architecture
and was already deployed on a kubernetes cluster to be tested.

To evaluate the acceptance of the concept provided in this software, we con-
ducted usability tests with a group of users familiar with data mining frame-
works, obtaining results that confirm our assumptions in relation to the envi-
sioned concept. We performed also a usability test with a group of students
without experience with such software tools but with background in statistics,
whom can also benefit with our software. We observed again an overall positive
user satisfaction in the last case.

The remaining document is organized as follows. In Section 2, we analyse
other related software tools. In Section 3, we describe the major requirements
of our software, its architecture and user interface. In Section 4, we present the
setup used to conduct the usability tests, and in Section 5 we present and discuss
the results acquired from the usability tests. Finally, in section 6 we draw the
main conclusions of this work and point out possible future research directions.

2 Related Work

The data mining process is composed of several steps. It starts with the insertion
of a dataset that is processed iteratively until a desired result is obtained and in
some cases the final result is a model created using a machine learning algorithm.

A classifier is one type of model that is produced by supervised machine
learning algorithms. It receives typically a vector of discrete and/or continuous
feature values and outputs a single discrete value, the class [6].

To assess how the classifier will behave in the presence of new data, the user
must evaluate its performance, that is, its capacity to predict correct outputs
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in the presence of new data. This assessment is properly performed by using
data that was not employed in the training phase, otherwise the evaluation
might be overly-optimistic [7]. Nonetheless it is not uncommon to see, even
in published articles, evaluations done with data already seen in the training
process, especially when data pre-processing/transformation precedes the use
of the final machine learning algorithm. Other common situation where overly-
optimistic results are verified occurs when parameter optimization is done. The
issues might be overcome by employing evaluation mechanisms such as nested
cross-validation [8].

Some applications that offer users the possibility to build data mining pro-
cesses without programming also lack in enforcing good data mining practices
to evaluate the produced models. Other applications provide correct evaluation
procedures by introducing some complexity to the user while building the data
science workflow. Next, we cite some of these applications.

AzureML [9], H2O.ai [10], Orange [11], Weka [12], and RapidMiner [13] are
systems / applications in production that provide visual programming paradigms
to help users building their models. Among these applications, AzureML is the
only one publicly deployed that can be accessed from a browser. H2O.ai is not
publicly deployed but can be installed in a cluster or locally and then used from
a browser. Weka and Orange are standalone solutions that must be installed
locally. RapidMiner is the only application among the previous ones that provides
nested cross validation for parameter optimization, however it also needs to be
installed locally.

ClowdFlows [14], DAMIS [16], and Zorrilla, M. and Garćıa Saiz, D. [18] are
research projects. In Clowdflows and DAMIS were created cloud systems that al-
low users to define data science workflows in a browser using visual programming
paradigms. Clowdflows assumes some previous experience with tools like Weka,
Orange or Scikit-Learn [15]. In Zorrilla, M. and Garćıa Saiz, D. it was created
a system following a SOA architecture that allows users to extract knowledge
from data by using predefined templates. Instead of allowing users to create new
models and evaluate them, the system just applies operations defined in pre-
defined templates to a user's dataset. None of the last three projects provide
nested cross validation.

All the cited applications that provide the creation of models require the user
to build more complex workflows to create experiments where multiple features
and parameters are tested to produce the model with best performance. In our
system we will enforce the execution of this process with less complexity to the
user and using good data mining practices.

3 Implementation

Having in mind the limitations identified in related applications, presented in
the previous section, we focused in creating a prototype to overcome some of
these issues. In this section we proceed with a more detailed description of our
system.
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3.1 Requirements

The identification of issues in related applications gave us the following list of
main requirements to address in our solution:

– Provide an application with high usability standards for non-programmers
to execute data science tasks.

– Provide different data pre-processing/transformation methods, feature selec-
tion and machine learning algorithms.

– Allow the creation of models using different features and parameters to se-
lect the best configuration of features and parameters automatically in the
end. Here, good data mining practices are enforced, e.g., using nested cross
validation.

– Provide access to the application without requiring users to install it in their
machines.

– Parallelize data science tasks when possible to get faster results.

– Provide a scalable system to support large numbers of users.

3.2 Architecture

To satisfy the previous requirements we envisioned a cloud application available
through the Internet that follows a microservices architecture and is depicted in
Fig. 1.
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Fig. 1. System architecture.
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When a user contacts our system, the first access is directed to the UI Service
that provides a web application written in ReactJS, from which further requests
are done to our API Gateway that redirects the requests to different services
accordingly.

The Tasks Service returns the data science tasks that can be used by the user
to compose a sequential data science workflow. The User Service enables users
to login in the system with a username and a password and holds information
related to users. The Datasets Service stores uploaded datasets in a distributed
file system (an NFS server) and also returns data from the NFS according to
users requests. Then, we have the Workflows Service that translates sequential
workflows sent by users, which are composed of simple data science tasks, into
a representation that is understandable by Netflix Conductor [19]. The new
workflow representation is sent to the Conductor Service and becomes available
to be processed by different Data Science services. The Workflows Service is
also contacted to return the status of workflows sent by users. Finally, the Data
Science Service is in reality composed of multiple fine grained services that work
on specific data science tasks present in the Conductor Service. These Data
Science Services share files (e.g., datasets, models) between them by writing and
reading to/from the NFS.

The communications between all the services presented in the architecture
are performed using the HTTP protocol, mainly through REST APIs.

Dataset input

Train-Test
validation
procedure

Feature Scaling

SVM

Accuracy

Split Dataset

Feature scaling

Feature scalingSVM creation

SVM prediction

Calculate accuracy

Fig. 2. Example of a data science workflow translation.

To better understand how individual data science tasks are processed in the
system, in Fig. 2 we present an example of a translation from a simple sequential
workflow sent by the user (on the left), to its representation in Netflix Conductor
(on the right).
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In the sequential workflow, the user inserts the location of the dataset to
use. Then he specifies that the procedure might be evaluated using the hold out
/ train-test method. He also specifies that he wants to apply a feature scaling
operation, followed by the creation of a model using the SVM algorithm. In the
end, the user wants to check the accuracy of the model.

Upon receiving the workflow, the Workflows Service translates it to a repre-
sentation that is understandable by Netflix Conductor and sends such represen-
tation to the Conductor Service. It contains a Split Dataset task (split original
data in train and test sets) that is followed by a Feature scaling task (applied to
train set). The Feature scaling task precedes a fork that allows the execution of
an SVM creation task (applied to train set) and a Feature scaling task (applied
to test set) in parallel. The SVM prediction task (applied to test set using the
model created before) will only be able to execute after the previous two tasks
become completed. Finally, there exists a task to compute the accuracy of the
model.

By using the Netflix Conductor technology we can parallelize the tasks and
orchestrate Data Science services to work in the different tasks in parallel and
independently, following a competing consumers pattern [20]. The Data science
services will be able to scale independently according to the type of tasks that
require more workers.

The translation described before is simple, though when a user sends for
example a workflow containing a cross validation task to evaluate the model or
sends a workflow with different numbers of features or parameters to produce an
automatic selection of the model with best parameters and features, these can
be translated into more complex workflows, however with several tasks running
in parallel.

With the Data Science Services working independently and in parallel in
these tasks, it is expected that the required time to process the entire workflow
will be reduced compared to running all the tasks sequentially.

The remaining services that compose the architecture can also be scaled out
independently. The architecture also enables users to let data science workflows
running, even after closing their browsers, and come back later to visualize the
final results.

3.3 User Interface

The user interface was designed with the objective of creating a minimalistic and
simple application where the user can produce the most value with the lowest
amount of effort. The interface is divided to 2 key areas. In Fig. 3 we can visualize
the interface used in the usability tests; on the left, with a dark background, we
have a sidebar where the user has his saved workflows and uploaded datasets;
he can also run or stop the workflow. When a user clicks the start button he
is sending the workflow to the workflows-service to execute and wait for its
completion. The user can also stop it at any time during its execution. The area
on the right is where the user can add tasks to the workflow, which will then
later be executed.
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Fig. 3. Interface of the prototype used in the usability tests

When adding a task, the user is shown the types of tasks that can be added.
This means that when the user clicks the plus button to add a task, depending
on the current state of the workflow, he can only see the tasks that can follow
and is not cluttered with all tasks at once. By doing this, the tasks are chained
together, guiding the user during the construction process.

There are 6 types of tasks that the user can perform:

– Dataset input: a task where the user specifies the dataset to use.
– Validation procedure: each task specifies the method used for the valida-

tion of all other subsequent tasks. Only makes sense if the user adds a model
creation type of task.

– Preprocessing: tasks that apply transformations to attribute values, such
as feature scaling.

– Feature selection: tasks where the user can filter attributes based on the
input parameters, such as the relieff algorithm.

– Model creation: is the type of tasks that creates machine learning models.
– Model Evaluation: specifies the metrics for model evaluation, such as ac-

curacy or f-measure.

4 Experimental Setup

The usability tests provided a crucial role in evaluating the prototype and val-
idating the paradigm of visual programming using sequential tasks. The tests
consisted in having the users execute a few exercises using the interface and
getting their feedback. This feedback was then used to evaluate the users’ expe-
rience, the usability of the interface and value that was provided to them, hence
validating this concept of visual programming applied to data science.

We divided the users to 2 types:
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– Type A: Users with no experience at all and no knowledge in data mining,
composed by a group of researchers, four with a masters degree in ecology
and three with a doctoral degree in biology (7 users).

– Type B: Users that knew about data mining but were not programmers.
This group was composed by students who were enrolled in a master’s degree
in biochemistry and were undertaking a course in data mining (11 users).

The process was separated to different steps: The first step started with a
quick overview of the platform and its functionalities, which took less than 3
minutes. After this introduction and answering any questions the users might
have, we gave them a paper with a problem and a list of exercises for them to
perform in order to solve that problem. The exercises fundamentally consisted
in using the data science tasks mentioned in section 3.3. If the users successfully
finished the exercises they would have solved the problem. This challenge was
estimated to take about 20 minutes. The last step was a questionnaire that the
users had to fill about their experience, and their thoughts on the relevance of
this platform. The questions were written in Portuguese but were translated to
English for this paper.

4.1 The iris flower dataset problem

In order to keep the tests brief and not overly complicated we decided to intro-
duce one of the common problems new data scientists learn during their training:
the iris flower dataset. This data was collected by Edgar Anderson to quantify
the morphological variation in iris flowers of three related species [21]. It con-
tains a total of three species of iris: Iris Setosa, Iris Versicolour, Iris Virginica;
and consists in the measurements of the species of iris and the dimensions of its
petals and sepals (centimeters).

Based on the measurements, the users would then create a model that could
predict the species of iris. The test was separated to 5 exercises:

1. The first exercise consisted in scaling the attributes of the dataset between
0 and 1.

2. Exercise two required the user to split the dataset to training and testsets
(60/40%). The one for training would later be used to train the SVM model
and the one for testing to see the accuracy and f-measure metrics.

3. Exercise three combined the first and second one. This was set to show the
user that tasks can be added and removed from the workflow and applying
feature scaling to an already created workflow was at a distance of a few
clicks.

4. In exercise four the user was asked to add the Relieff algorithm to the work-
flow in order to see what attributes would have the most predictive capabil-
ities.

5. Exercise number five used the best two attributes discovered in the previous
exercise and added the validation procedure called K-fold cross validation,
hence completing the assignment and creating a model.
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The exercises were simple and intertwined making the user have a feeling of
progress during their execution.

5 Results

5.1 Questionnaire

The questionnaire allowed us to know how much the users liked the interface,
their experience using the tool and if they found it useful. Each statement could
be answered as: totally disagree, disagree, indecisive, agree and totally agree. In
order to analyze the average response and the standard deviation we converted
the answers to numbers, where number 1 translates to ”totally disagree” and 5
to ”totally agree”.

Fig. 4. Average and standard deviation of the users’ responses

As seen in Fig. 4 the values are all above average. The most satisfactory
results where that they found the interface easy to use, they would recommend
it to colleagues and that they would use it again to solve related problems. The
attractiveness of the interface, even though it was very positive, scored lower
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than the other metrics; this was expected since this is a prototype and that part
was not a priority. The results acquired from the type A users are lower than the
ones from type B. This showed that the users with no experience (type A) had an
higher difficulty using the interface, but surprisingly they found easier to find the
required functionalities and the design simpler to understand. To assess whether
the differences in the answers among the two populations were statistically sig-
nificant, we performed unpaired statistically significant tests. Before that, both
distributions were tested for Gaussianity using the Kolmogorov-Smirnov test.
In case both distributions were Gaussian, an unpaired T-test was conducted;
otherwise, a Wilcoxon rank sum test was performed. Hence, for each of the ten
questions, only the question ”You understood the exercises that were assigned”
showed statistical significant differences among the two populations (at p <
0.05). We hypothesise that it was easier for the type A subjects to understand
the exercises because they had experience in data mining and knew about the
Iris dataset since it is a very common problem to teach new data scientists.

5.2 Feedback

Besides answering the questionnaire the users also had a place to write sugges-
tions, critiques and things they liked better in the application. Bellow we have
a list with the compilation of comments the users wrote for each of these topics.

Key suggestions:

– It should be possible to see all the tasks that were added to the workflow at
all times. At the moment the user needs to scroll up and down to see and
edit the tasks.

– In the dataset input, the option of selecting attributes to remove from the
dataset should be replaced with attributes to select.

Key critiques:

– Sometimes the users did not know that a task belonged to a certain type, e.g
feature scaling is a task that is of preprocessing type but some users when
asked to use it did not intuitively know that it was of that type. This is a
problem because the users first select the type of task they want to choose
from and then the task itself. This problem can be solved by finding an
alternative for the way users add tasks to the workflow or having a place
where the users can search for all available tasks and read more information
about them. Since this is a prototype and at the moment we do not support
that many different tasks, the users found that task in a few seconds. However
but if there were more tasks it would be harder.

– To use a dataset in any workflow the users must copy the dataset’s uri
that is shown in the sidebar and paste it to the dataset input task. Some
users did not found that intuitive and another alternative should be taken
to consideration.

Things they liked the most:
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– Simplicity, accessibility and design.
– Low learning curve and easiness to use.
– How fast it was to run an experiment and get the results.
– Intuitiveness.
– It does not require any installation and it can be used anywhere with internet

access.
– The tasks were chained together guiding the process of constructing the

workflow.
– Grid search.
– The outputs are direct and very informative.

This feedback reinforced what was discovered during the questionnaire and
was very satisfactory, none of the critiques were about the concept we aim to
prove and the things they liked the most were inline with the objectives we tried
to achieve when building the application.

6 Conclusion

In this work we presented a service for non-programmers to build Data Science
experiments employing good data mining practices. We prototyped a cloud ap-
plication that follows a microservices architecture. The interface built tried to
achieve a high degree of simplicity and usability. To test it, experiments were
made with experienced and non-experienced users to evaluate the prototype and
validate the paradigm of visual programming using sequential tasks. The results
were satisfactory with a positive feedback and without critiques related to what
we are trying to achieve. In the future we plan to add predefined data science
workflow templates that might be searched, changed and shared by the users,
as well as make comparative benchmarks with other platforms. Regarding the
usability tests we plan to improve the application by making changes to the user
interface according to the feedback received.
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