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MIR: What and Why?

a MIR

* Music Information Retrieval: interdisciplinary research field
devoted to the study of information extraction mechanisms from
musical pieces, retrieval methodologies, as well as all the processes
Involved in those tasks in different music representation media.

a Why MIR?

 MIR emerges from the necessity to manage huge collections of
digital music for “preservation, access, research and other uses”
[Futrelle and Downie, 2003]
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MIR: What and Why?

a Music and Man

 Music expresses “that which cannot be put into words and that
which cannot remain silent” (Victor Hugo)

« “We associate music with the most unique moments of our
lives and music is part of our individual and social imaginary”
[Paiva, 2006]

- “By listening to music, emotions and memories, thoughts and reactions,
are awakened” [Paiva, 2006]

- “Life has a soundtrack” [Gomes, 2005] (“Festivais de Verao”,
Jornal “Publico”)

* “The history of a people is found in its songs” (George Jellinek)
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MIR: What and Why?

0 Music and World economy

 Music industry runs, only in the USA an amount of money in
the order of several billion US dollars per year.

* Explosion of the Electronic Music Industry (EMD)
- Widespread access to the Internet
- Bandwidth increasing in domestic and mobile accesses
- Compact audio formats with near CD quality (mp3, wma)
- Portable music devices (iPod, mp3 readers)
- Peer-to-peer networks (Napster, Kazaa, eMule)

- Online music stores (iTunes, Calabash Music, Sapo Music) -
resolution is the song, not the CD

- Music identification platforms (Shazam, 411-Song, Gracenote MusiclD /
TracklD)

- Music recommendation systems (MusicSurfer)
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MIR: What and Why?

a Music and World economy (cont.)

* By 2005, Apple iTunes was selling = 1.25 million songs each
day [TechWhack, 2005]

- Until January 2009, over 6 billion songs had been sold in total
[TechCrunch, 2009]

« By 2007, music shows in Portugal sold 30 M€ in tickets [RTP,
2009]

« Number and dimension of digital music archives continuously
growing
- Database size (these days, over 2 million songs)
- Genres covered
« Challenges to music providers and music librarians
- Organization, maintenance, labeling, user interaction

- Any large music database is only really useful if users can find what
they are looking for in an efficient manner!
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MIR: What and Why?

0 Database Organization and Music Retrieval

* Presently, databases are manually annotated = search and
retrieval is mostly textual (artist, title, aloum, genre)

- Service providers
— Difficulties regarding manual song labeling: subjective and time-consuming,

- Customers

— Difficulties in performing “content-based” queries

* “Music’s preeminent functions are social and psychological”, and so “the most useful
retrieval indexes are those that facilitate searching in conformity with such social and
psychological functions. Typically, such indexes will focus on stylistic, mood, and
similarity information” [Huron, 2000].

« = Music Information Retrieval (MIR) emerges from the
necessity to manage huge collections of digital music for
“preservation, access, research and other uses” [Futrelle and
Downie, 2003].
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MIR: What and Why?

0 Database Organization and Music Retrieval
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Applications
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Applications

a Platforms for EMD

« Similarity-based retrieval tools

- Query-by-melody
(query-by-humming, QBS) [Parker, 2005; Ghias et al., 1995]

- Plagiarism detection [Paiva et al., 2006]
- Music web crawlers [Huron, 2000]
0 Music education and training

« Automatic music transcription [Ryynanen, 2008; Kashino et al.,
1995]

- —>Music composition, analysis, performance evaluation, plagiarism
detection

a Digital music libraries

 For research issues involving music retrieval, training (learning
activities, evaluation, etc.) = Variations [Dunn, 2000]
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Applications

0 Audio software —
! ; = o i b [ |
editors = automatic indexing
[Tzanetakis, 2002] Fr
il Mﬁmﬁﬁﬁ
0 Multimedia databases and .
operating systems I
[Burad, 2006] ST T c— S —
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0 Video indexing and searching

« Segmentation based on audio (music) content - detection of
scene transitions [Pfeiffer, 1996]
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Applications

Q Advertisement and cinema
» Tools for mood-based retrieval [Cardoso et al. 2011]

Q Sports

 Music to induce a certain cardiac frequency [Matesic and
Cromartie, 2002]

Q... and so forth...
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Short MIR Tale

0 Precursors of computer-based MIR: incipit and theme indexes, e.g.,
Harold Barlow and Sam Morganstern’s dictionary of musical
themes [Barlow and Morganstern, 1948]
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1 © Rui Pedro Paiva, “From MIR to MER”, 2012




Short MIR Tale

0 1966: potential of applying automatic information retrieval
techniques to music was recognized [Kassler, 1966]

0 1970s and 1980s: automatic music transcription systems

0 1990s: surge of interest, mostly in topics such as query-by-
humming (impulse from research on digital libraries)

Q 2000: 1st International Symposium on Music Information Retrieval
(ISMIR)

 Now “International Society for Music Information Retrieval Conference”
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Short MIR Tale

0 2000-present: active multidisciplinary research field

Community Type of Institution(s) Typical Research Areas

Computer Science, Information Retrigval Academic, Commercial Representation, Indexing. Retrieval, Machine Learning.
User Interface Design

Audio Engineering, Digital Signal Processing Academic, Commercial Compression, Feature Detection, Pitch Tracking.
Machine Learning, Classification, Playlist Generation,
Musical Analysis

Musicology, Music Theory Academic Representation, Musical Analysis

Library Science Libraries, Academic Representation, Metadata, User Studies, Classification,
Intellectual Property Rights, User Interface Design

Cognitive Science, Psychology, Philosoply Academic Representation. Perception, User Studies, Ontology

Law Government, Legal Intellectual Property Rights

Profession, Academic

© Joe Futrelle and J. Stephen Downie, 2003
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Short MIR Tale

0 2000-present: active multidisciplinary research field

« Content analysis and similarity assessment and retrieval in
audio song databases

- Metrics of similarity, music identification, music recommendation, audio
fingerprinting, music classification and feature extraction, tempo and
melody detection, music summarization

« Databases systems, indexing, query languages
 Knowledge representation, metadata

« Theme extraction, harmonic and motive analysis, tonality
« Emotion

« Perception and cognition

« Social, legal, ethical and business issues

« User interface design
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Representations
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Representations

0 Audio (music content analysis)
* Object
- Audio recordings, streaming audio
« Topics

- Automatic transcription, QBE, classification, recommendation,
identification, ...

QO Symbolic
* Object
- Scores or event-based representations (e.g., MIDI)
« Topics
- Melodic matching, theme extraction, harmonic analysis, ...
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Representations

a Visual
* Object
- Printed music
« Topics
- Optical music recognition
0 Metadata
* Object
- Any kind
« Topics
- Digital libraries, music ontologies (semantic web)
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Techniques

a ldea
« Extract semantic information from low-level data

» Feature extraction
- Physical: FO, intensity, centroid, uniformity, rolloff, flux
- Perceptual: pitch, loudness, timbre, beat
- Musicological: notes, melodies, measures, motives, themes
- Higher-level (semantic) features: emotion, genre, instruments, artist

« Content and Representation

Audio: which instruments, notes, artist
Symbolic: themes, motives

Visual: notation, basic units

Metadata: genre, artist, MPEG-7 descriptors
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Techniques

a Physical features

 Time domain

- Waveform analysis: energy contour, amplitude-based segmentation,
auto-correlation, peak detection

X(t) = Asin(a)ot)+§sin(3a)ot)+gsin(Sa)ot), A=1; f, = 200Hz; o, = 24f,

°‘8\M UL e v“uﬂ‘ \
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Techniques

0 Physical features (cont.)

 Time domain
- Auditory model-based FO detectors, beat detectors (energy-based)

a) Sound waveform b) Cochleagram frame
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Techniques

a Physical features

Frequency domain
- DFT, STFT, spectrogram
- FO detectors
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Techniques

0 Physical features (cont.)

« Spectral features
- MFCCs, centroid, rolloff, flux, harmonicity, high-frequency content, ...
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0 Physical features (cont.)
« Spectral features + sub-band features (e.g., audio

fingerprinting)
Original MP3@128Kbps Bit Errors
Band Energy ; 1 I
Division Computation Bt Derivation (=
~{2x? -+ F@0)
ouier 2O T |50+ ~0l{» F.1)
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Techniques

0 Perceptual features
« Pitch

Frequency

Intensity

Context

Ear physiology (age)
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© MIR Toolbox, 2008
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Techniques

0 Perceptual features (cont.)

* Loudness
Intensity Fletcher-Munson equal loudness contours
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Techniques

0O Perceptual features (cont.)

 Timbre
- No physical correlate

- “what something sounds like”:

— Spectral content at steady-sate
* Centroid, rolloff, relative amplitudes of harmonic components, inharmonicty...

— Signal’s temporal envelope
+ Attack transient

— Temporal behavior of the harmonics
« Melodic contour
- UDUEEUUD

 Rhythm contour
- FSSFEEFS

e Beat
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Techniques

0 Musicological features
* Notes from audio

a) Eliades Ochoa's excerpt b) Female opera excerpt
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* Notes from optical music recognition
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Techniques

0 Musicological features (cont.)

 Melody
Raw Musical
Signal Pitches in 46-msec Frames Entire Set of Notes Melody Notes
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Curve {with onset detection directly MNotas
on the raw signal) 3) Melody Smoothing

4) Salient Pitches L "
/ 4) Elimination of False Positives
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Techniques

0 Musicological features (cont.)
« Themes
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Techniques

Q Higher-level features = top-down information flow
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Techniques

0 Higher-level features (cont.)
« Bridge the semantic gap

« Memory, context, expectations

- Repetitions, sonic environment, modeling the individual, musicological
knowledge

 Emotion: valence (happy/anxious) and arousal (calm/energetic)
- Classification approaches resorting to low-level features
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MER: What and Why?

Applications

Short MER Tale

Emotion Models

Techniques

MER@CISUC

Current Limitations and Open Problems

MusIC EMOTION RECOGNITION
(MER)
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MER: What and Why?

a0 MER

 Music Emotion Recognition: branch of MIR devoted to the
Identification of emotions/moods in musical pieces
« Emotion vs mood
- MIR researchers - use both terms interchangeably
- Psychologists - clear distinction [Sloboda and Juslin, 2001]
— Emotion = a short experience in response to an object (e.g., music)
— Mood = longer experience without specific object connection
« Categories of emotions [Gabrielsson, 2002)]

- Expressed emotion: emotion the performer tries to communicate to the
listeners

- Perceived emotion: emotion the listener perceives as being expressed
in a song (which may be different than the emotion the performer tried
to communicate) = scope of MIR researchers

- Felt (evoked) emotion: emotion felt by the listener, in response to the
song and performance
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MER: What and Why?

a Why MER?

« “Music’s preeminent functions are social and psychological”,
and so “the most useful retrieval indexes are those that
facilitate searching in conformity with such social and
psychological functions. Typically, such indexes will focus on
stylistic, mood, and similarity information” [Huron, 2000].

- Studies on music information behaviour = music mood is an important
criterion for music retrieval and organization [Juslin and Laukka, 2004]

* “In the academia, more and more multimedia systems that involve
emotion analysis of music signals have been developed, such as
Moodtrack, LyQ, MusicSense, Mood Cloud, Moody and i.MTV, just
to name a few. In the industry, many music companies, such as
AMG, Gracenote, MoodLogic, Musicovery, Syntonetic, and
Sourcetoneuse emotion as a cue for music retrieval.” [Yang and
Chen, 2012]
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MER: What and Why?

a Difficulties [Yang and Chen, 2012]

« Emotion perception is by nature subjective [Yang and Chen,
2012]

- People can perceive different emotions for the same song

« = Performance evaluation of an MER systems is difficult [Yang
and Chen, 2012]

- Common agreement on the recognition result is hard to obtain

 Still not fully understood how music and emotion are related
- Despite several studies on music psychology
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Applications

a Platforms for EMD

 Mood-based retrieval tools
- Music recommendation, automatic playlist generation, classification, ...

0 Game development
0 Cinema
0O Advertising

QO Health
* Sports
e Stress management
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Short MER Tale

0 19th century: initial research on the relations between
music and emotion [Gabrielsson and Lindstrom, 2001]

0 20th century: more active study of music and emotion
* Relationship between emotions and musical attributes
- Mode, harmony, tempo, rhythm, dynamics [Meyers, 2007]
 Mood models
- E.g., Kate Hevner [Hevner, 1935], James Russell [Russell, 1980]

0 1980-1990s: Initial computational models = mostly
emotion synthesis (e.g., [Juslin, 1997])

« Relationships between emotion and music composition and
music expressivity
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Short MER Tale

0 1980-1990s: only a few works on emotion analysis
* Mostly in the symbolic/MIDI domain [Lu et al., 2006]

0 2003: first work on mood detection in audio musical
sighals (by Yazhong Feng [Feng et al., 2003])
4 mood categories (happiness, sadness, anger and fear)
« 2 musical attributes: tempo and articulation
* Neural network classifier trained using 200 musical pieces

« Test corpus of 23 pieces, with average precision and recall of
67 and 66%

0 2004: first multi-modal approach combining audio and
text (lyrics) [Yang and Lee, 2004]
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Short MER Tale

a 2006: first study on MEVD (Music Emotion Variation
Detection [Lu et al., 2006]

« Temporal variable: emotions may change throughout a song

0 2007: first mood analysis model based on a
dimensional approach [Yang et al., 2007]

« Thayer 2D mood model = continuous emotion as function of
arousal and valence
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Short MER Tale

a 2007: first MIREX (MIR Evaluation eXchange) track
devoted to mood classification [MIREX, 2012]

 Before:

- Each approach used a different (and limited) set of features, mood
taxonomies, number of classes and test sets.

- Some approaches constrained the analysis to a particular musical style
(e.g., classical music)

a Present: active research in the field
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Emotion Models

0 Two main conceptualizations of emotion

« Categorical models

- Emotions as categories: limited number of discrete emotions
(adjectives)

 Dimensional models
- Emotions as continuous values, depending on 2 or 3 axes
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Emotion Models

a Categorical Models

* Main ideas

- “people experience emotions as categories that are distinct from each
other” [Yang and Chen, 2012]

- Existence of basic emotions

— Limited number of universal and primary emotion classes (e.g.,
happiness, sadness, anger, fear, disgust, surprise) from which all other
“secondary” emotion classes can be derived
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Emotion Models

a Categorical Models

« Examples
- Hevners’s 8 clusters of affective terms (1935)

- Regrouped into 10 adjective groups by Farnsworth [Farnsworth, 1954]
and into 9 adjective groups by Schubert [Schubert 2003].

7
exhilarated
8_ soaring 6
vigorous triumphant merry
robust dramatic joyous
emphatic passionate gay
martial sensational happy
1 ponderous agitated cheerful 5
spiritual majestic exciting bright humorous
lofty exalting impetuous playful
awe-inspiring restless whimsical
dignified fanciful
sacred 2 4 quaint
solemn sober pathetic lyrical sprightly
serious doleful leisurely delicate
sad satisfying light
mournful 3 serene graceful
tragic dreamy tranquil
melancholy yielding quiet
frustrated tender soothing
depressing sentimental
gloomy longing
heavy yearning © Yang and Chen, 2012
dark pleading
plaintive
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Emotion Models

a Categorical Models

« Examples

- Tellegen-Watson-Clark
model (1999)
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Emotion Models

a Categorical Models
* Limitations
- Limited number of adjectives
- Larger number may ne impractical for psychological studies
- Adjectives may be ambiguous
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Emotion Models

a Dimensional Models

* Main ideas

- Emotions experience as a continuous

— Each emotion is a locations in a multi-dimensional plane, based on a
reduced number of axes (2D or 3D)

— Argument: correspond to internal human representations of emotions
- 3 main dimensions of emotion [Yang and chen, 2012]

— valence (or pleasantness; positive and negative affective states),

— arousal (or activation; energy and stimulation level)

— potency (or dominance; a sense of control or freedom to act)

- 2D used in practice

— Valence and arousal regarded as the “core processes” of affect [Yang and
Chen, 2002]

— Simpler to visualize emotions
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Emotion Models

a Dimensional Models

« Examples
- James Russell's
. Arousal
circumplex model A
[RUSSG”, 1980] alarmed astonished
angry aroused
annoyed )
fustrated delighted
glad
h
o = = Valence
miserable pleased
content
satisfied
bored tired calm
\

© Kim et al., 2010
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Emotion Models

a Dimensional Models

« Examples
- Robert Thayer’'s model [Thayer, 1989]

exunberant, trmmphant anxious, frantic
carefree terror
T
ETErTY
content, serene ommous, depression

stress ——3
© Meyers, 2007
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Emotion Models

0 Dimensional Models
* Limitations
- Obscures important aspects of emotion
— Anger and fear are placed close in the valence-arousal plane

— Very different in terms of their implications
— —> potency (dominant—submissive) as the third dimension
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Techniques

a ldea

 Extract musical features correlated to emotion from the
information source under analysis (audio, MIDI, lyrics, ...)

« Temporal variable
- Emotions may change throughout a song > MEVD
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Techniques

O Relevant musical attributes

« = Studies by music psychologists, e.g., [Gabrielsson and
Lindstrom, 2001]

- Dynamics, articulation, timbre, pitch, interval, melody, harmony, tonality
and rhythm [Friberg, 2008], mode, harmony, tempo, rhythm, dynamics,
musical form [Meyers, 2007]

— Modes: major modes related to happiness or solemnity, minor modes
associated with sadness or anger [Meyers, 2007].

— Harmonies: simple, consonant, harmonies are usually happy, pleasant or
relaxed; complex, dissonant, harmonies relate to emotions such as
excitement, tension or sadness, as they create instability in a musical piece
[Meyers, 2007].

- Few relevant audio features proposed so far [Friberg, 2008]

— Difficult to extract from audio signhals - but easier to extract from
symbolic representations (some features are score-based in nature)
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Techniques

a Relevant musical attributes

55

Timing: Tempo, tempo variation, duration contrast
Dynamics: overall level, crescendo/decrescendo, accents
Articulation: overall (staccato/legato), variability

Timbre: Spectral richness, onset velocity, harmonic richness
Pitch (high/low)

Interval (small/large)

Melody: range (small/large), direction (up/down)
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Techniques

0 Relevant musical attributes
« Harmony (consonant/complex-dissonant)
« Tonality (chromatic-atonal/key-oriented)
Rhythm (regular-smooth/firm/flowing-fluent/irregular-rough)
Mode (major/minor)
Loudness (high/low)
Musical form (complexity, repetition, new ideas, disruption)
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Techniques

a Overall approach: classical pattern recognition
approach
« 1) Selection of a mood model

- Categorical or dimensional?

- How many categories / variables? Multi-label or probabilistic
classification?

« 2) Acquisition of training and testing data

- Necessary to perform manual data annotation? How many annotators,
what profiles, how many songs, song balance, etc.?

« 3) Feature extraction and selection
- Which features? How to extract them from the information source?
- How to evaluate the impact of different features in each class?
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Techniques

a Overall approach: classical pattern recognition

approach
» 4) Selection of a representation model
- Black-box, gray-box, white-box?
— Black-box paradigm dominates. Gray-box should be researched.
- SVM, neural networks, GMM, KNN, neural-fuzzy classifiers, rule-base

systems?
— SVMs: most accurate results currently

- NN: how many hidden layers, etc? SVM: which parameters?...
— SVM parameter optimization: grid-search

« 5) Model training
- How to organize the training and testing experience? Cross validation?
How many folds?
— Tipically, 10-fold cross validation
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Techniques

a Overall approach: classical pattern recognition
approach

* 6) Model validation

- How to quantitatively evaluate the results? RMSE, SSE, correlation, R2
statistics? Precision, recall and F-measure? Confusion matrix?

— Regression: RMSE and R2 are tipically used
— Classification: Precision, recall and F-measure are standard

- What kinds of errors are more prevalent? Why? Where is the root of the
problem: classifier/regressor, extracted features, method employed for
extraction, feature selection approach?

— Currently, the bottleneck seems to be the lack of semantic richness of
current low-level features and the innacuracy of particular feature
extraction algorithms (e.g., tempo, etc.)

- What classes/variables show low accuracy? Why?
— Valence: important features might be missing

- Same questions for individual songs.

59 © Rui Pedro Paiva, “From MIR to MER”, 2012




Techniques

Q Acquisition of training and testing data [Kim et al., 2010]
* Subjective tests
 Annotation games

Doscribo the tune ... Listoning 1o the same tune?

0=

quitar oo Correct Partar
classical v 00 poets v Score: 41 Time: 00:22

MUOTUS WG

.14 . | ©Kimetal., 2010
______ -~ 3 1 L} L) ! )
o Lol 130 Al :

T 18 o
o Qs [ET
1 2 : B
B chill fetecteol house 4
N : ¢ g Depressing  Discouraging | -Sad psatiing Angry
‘" technoMNOCKY »~v-x
!‘ 2 >
-u o o raTe
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Techniques

a Feature Extraction

* Music platforms
- Audio: Marsyas, MIR Toolbox, PsySound, ...
- MIDI: jMIR, ...
- Lyrics: ConceptNet, ...
* Audio: acoustic features developed in other contexts

- Music genre classification (e.g., spectral shape features, Mel-frequency
cepstral coefficients (MFCC), etc.) and speech recognition

— Low-level audio descriptors (LLDs): spectral shape features such as
centroid, spread, bandwidth, skewness, kurtosis, slope, decrease, rolloff,
flux contrast, MFCCs, etc.

* Necessary to
- Evaluate the relevance of LLDs to mood detection
- Program actual mood-related features

61 © Rui Pedro Paiva, “From MIR to MER”, 2012




Techniques

a MEVD

« Segment-based classification [Panda and Paiva, 2011]
- Divide audio signal into small segments
- Classify each of them as before

 Ad-hoc strategies (e.g., [Lu et al., 2006])

- Segmentation based on feature variations
— Thresholds used and difficult to tune
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Limitations and Open Problems

a Current Limitations

 Agreement on a usable mood taxonomy

- MIREX mood: only 5 moods, with semantic and acoustic overlap [Yang
and Chen, 2012]

« Lack of sizeable real-world datasets
- Dimensional approaches
— Yang only uses 194 songs
- Categorical approaches
— MIREX mood validates using 600 songs [MIREX, 2012]

« Accuracy of current systems is too low for most real-world
applications

- MIREX best algorithm ~ 65% accuracy in a 5-class mood problem
[MIREXresults, 2010]
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Limitations and Open Problems

a Open problems

e Semantic gap

- Novel, semantically-relevant features necessary, able to capture the
relevant musical attributes

— Most important limitation, according to [Friberg, 2008]
- Multi-modal approaches: combination of different information sources
(audio, midi, lyrics)
— Use MIDI resulting from automatic music transcription
* Data sets

- Real-world sizeable datasets for categorical, dimensional and MEVD
approaches

- MEVD
- Other techniques, e.g., self-similarity techniques [Foote, 1999]
- Quality datasets
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Limitations and Open Problems

a Open problems

« Multi-label classification (e.g., [Sanden and Zhang, 2011])
- Same song belonging to more than one mood category

« Extraction of knowledge from computational models
- E.g., neural-fuzzy approaches [Paiva and Dourado, 2004]
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